Beta decays of ⁸He, ⁹Li, and ⁹C

D.J. Millener^a

Brookhaven National Laboratory, Upton, NY 11973, USA

Received: 23 October 2004 / Published online: 3 May $2005 - C$ Società Italiana di Fisica / Springer-Verlag 2005

Abstract. The beta decays of ${}^{8}He$, ${}^{9}Li$, and ${}^{9}C$ are interpreted in terms of shell-model calculations in a p-shell basis. Particular attention is paid to the observed low-energy decays that exhibit large B(GT) values.

PACS. 23.40.-s β decay; double β decay; electron and muon capture – 21.60.Cs Shell model – 27.20.+n $6 \leq A \leq 19$

1 Introduction

Supermultiplet symmetry is essentially conserved by the central part of the p-shell Hamiltonian and is broken mainly by the spin-orbit interaction. Apart from terms involving *n* and n^2 the SU_4 invariant terms of a typical interaction look like [\[1\]](#page-1-0)

$$
H \sim -3.91 \sum_{ij} P_{ij} + 0.59L^2 - 1.08S^2 + 0.59T^2.
$$

Thus the central interaction favors low T and high S for states with the same spatial symmetry $[f]$. This opens up the possibility of low-energy Gamow-Teller (GT) transitions with large Gamow-Teller matrix elements (no change in spatial quantum numbers).

2 ⁸He decay

The situation for ${}^{8}He(\beta^-){}^{8}Li$ is shown in fig. [1.](#page-0-0) From ta-ble [1,](#page-0-1) the first three states have mainly [31] symmetry the mixture of ${}^{1}P, {}^{3}P,$ and ${}^{3}D$ varies considerably for different interactions— and owe their GT strength to small admixtures of [22] symmetry. On the other hand, the large $B(\text{GT})$ value, defined by $ft \cdot B(\text{GT}) = 6144.4 \text{ s}$, for the 1_4^+ state is due to the match of spatial quantum numbers with the ⁸He ground state and does not vary much in different calculations. The 1^+_4 state takes a large fraction of the Ikeda sum rule $12(g_A^{\text{eff}})^2 \sim 14$, where $g_A^{\text{eff}} \sim 1.07$ [\[2\]](#page-1-1). The \sim 9.3 MeV state can decay by neutron emission $(S_n = 2.03 \text{ MeV})$ and triton emission $(S_t = 5.39 \text{ MeV})$, mainly through the [31] component. The shell-model spectroscopic factors lead to comparable neutron and triton widths and a total width of ~ 1 MeV. Details are given in table [2.](#page-1-2) Existing fits [\[3,](#page-1-3)[4,](#page-1-4)[5\]](#page-1-5) give $E_x \sim 9.0 \rightarrow 9.7$ MeV

Fig. 1. Level spectrum showing the four 1^+ levels of 8 Li reached in the β ⁻ decay of ⁸He. Energies are in MeV.

Table 1. Symmetry content and $B(\text{GT})$ values for the 1⁺ final states of 8 Li (see fig. [1\)](#page-0-0) in the β^- decay of 8 He. The 8 He initial state is 74% [22] symmetry with $L = 0$ and $S = 0$ (26% [211] symmetry with $L = 1$ and $S = 1$). The 84(1)% branch to $1⁺$ combined with $t_{1/2} = 119.0(15)$ ms gives $B(\text{GT}) = 0.391(7)$.

J_n^{π}	$% \; [31]$	% [22]	$B(\text{GT})$
1_{1}^{+}	93.6	2.3	0.32
1_{2}^{+}	91.0	8.3	0.71
1_3^+	92.2	2.8	0.37
1^{+}_{4}	10.6	71.5	11.7

Conference presenter. e-mail: millener@bnl.gov

Table 2. Calculated triton and neutron widths for the 1^+_4 state of ⁸Li. The S values are the shell-model spectroscopic factors. The widths are estimated by matching R-matrix observed widths to single-particle widths from Woods-Saxon wells [\[1\]](#page-1-0) and include integration over two-level R-matrix profile functions $[6]$ for the broad ⁵He final states.

Decay	S_{-}	Γ (keV)
$1^+_4 \stackrel{t}{\rightarrow} {}^5\text{He}(3/2^-)$	0.030	254
$\stackrel{t}{\rightarrow}$ ⁵ He(1/2 ⁻)	0.066	253
$\stackrel{n}{\rightarrow}$ ⁷ Li(3/2 ⁻)	0.041	316
$\stackrel{n}{\rightarrow}$ ⁷ Li(1/2 ⁻)	0.018	129

and $B(\text{GT}) = 5 \rightarrow 8$ for the 1_4^+ level but include only the ground-state triton channel and sometimes omit neutron channels [\[3\]](#page-1-3); see also [\[5\]](#page-1-5). Triton emission to the $1/2^-$ state of ⁵He needs to be included in a new many-level, manychannel R-matrix analysis along the lines of ref. [\[4\]](#page-1-4) but including averaging over the profiles of the ⁵He states.

3 ⁹Li and ⁹C decay

A comparison of these mirror decays, based on analyses of experimental data, is shown in table [3.](#page-1-7) The initial states have mainly [32] symmetry with $L = 1$ and $S = 1/2$ (78%) . Therefore, large $B(GT)$'s can occur for final states with [32] symmetry and $L = 1$ with $S = 1/2$ or $S =$ 3/2, giving rise to five possible final states in the limit of good supermultiplet symmetry. The properties of the five corresponding shell-model states are given in table [4.](#page-1-8)

It should be noted that all final states except for the ⁹Be ground state decay into the $\alpha + \alpha + N$ channel, in many cases by nucleon emission through the broad firstexcited state of 8 Be or via α emission through the unbound states of ⁵He or ⁵Li (or perhaps by three-body breakup) making for a difficult analysis. The mirror transitions to low-lying states with dominant [41] symmetry have small $B(\text{GT})$ values and are in quite good agreement. However, there is a large asymmetry for decays to $5/2^-$ levels near $E_x = 12$ MeV. This is unexpected for states with large $B(\text{GT})$ values. The $B(\text{GT})$ value for the decay of ⁹C to the 12.19 MeV state of $9B$ is consistent with the theoretical prediction in table [4.](#page-1-8) Suspicion falls on the very large $B(\hat{G}T)$ value for the 11.81 MeV state of ⁹Li because, in the limit of good supermultiplet symmetry, the $5/2^-$ state takes only 1/3 of the Ikeda sum rule = $9(g_A^{\text{eff}})^2 \sim 10.4$.

The previously known [32] symmetry states with $T =$ $1/2$ are the $7/2₂⁻$ and $5/2₄⁻$ states, both with dominant $L = 2, S = 3/2$ components. These states are strongly populated in pickup and knockout reactions on ¹⁰B. The observed energies $[7]$ are 11.81 and 14.48 MeV in 9 Be and 11.65 and 14.7 MeV in 9 B. The energies are well reproduced by the shell-model calculation. Table [4](#page-1-8) show the $1/2^-$, $3/2^-$, and $5/2^-$ states that are predicted to have large $B(\text{GT})$ values. As already noted, the energy and $B(\text{GT})$ value for the $5/2_3^-$ state can account for the properies of the 12.19 MeV level observed in ${}^{9}C(\beta^+)$. However, an explanation of the $9.0(10)\%$ p₀ decay branch via

Table 3. Experimental data on the decays of ${}^{9}C$ and ${}^{9}Li$ [\[7\]](#page-1-9). The data for ${}^{9}C(\beta^+)$ are from [\[8\]](#page-1-10) after normalization to the ground-state branch of $54.1(15)\%$ from [\[9\]](#page-1-11); also $B(\text{GT}) =$ 1.92(24) for the 12.19 MeV level [\[9\]](#page-1-11). For 9 Li(β ⁻) decay see [\[2,](#page-1-1) [10\]](#page-1-12); also $B(\text{GT}) = 8.5(1.5)$ for the 11.81 MeV level [\[11\]](#page-1-13).

J^{π}	^{9}B E_r	${}^{9}C(\beta^+)$ B(GT)	⁹ Be E_r	9 Li(β^-) B(GT)
$3/2^-_1$	0	0.0295(8)	0	0.0292(9)
$5/2^{-}_{1}$	2.36	0.053(12)	2.43	0.046(5)
$1/2^{-}_{1}$	2.75	0.013(2)	2.78	0.011(5)
			11.28	1.4(5)
$5/2_3^-$	12.19	2.16(22)	11.81	8.9(1.9)
	14.0	0.36(5)		
$3/2^-$; 3/2	14.65	~ 0	14.39	

Table 4. Results from a typical shell-model calculation. The first line gives the total [32] symmetry content for each shellmodel eigenstate. The second line gives the dominant component, all with $L = 1$. The energies are given relative the $7/2$ ⁻¹/₂ state (83.4% [32] $L = 2 S = 3/2$) at 11.65 MeV in ⁹B (see text). The $B(\text{GT})$'s are given for $g_A^{\text{eff}} = 1$.

f-wave emission lies beyond the scope of a p-shell calculation. Beta-decay strength is also predicted to a number of $1/2^-$ and $3/2^-$ states. If these states mainly decay by α emission, as suggested by the calculation, their effect on the measured alpha spectra may be difficult to see.

A multi-level, multi-channel R-matrix analysis of the the β -delayed particle decay of ⁹C has been attempted [\[12\]](#page-1-14). An analysis that makes use of shell-model input, preferably from an extended basis (at least $(0+2)\hbar\omega$) shell-model calculation, would seem to be indicated.

This work is supported by the US Department of Energy under Contract No. DE-AC02-98CH10886.

References

- 1. D.J. Millener, Nucl. Phys. A 693, 394 (2001).
- 2. W.-T. Chou et al., Phys. Rev. C 47, 163 (1993).
- 3. M.J.G. Borge et al., Nucl. Phys. A 560, 664 (1993).
- 4. F.C. Barker, E.K. Warburton, Nucl. Phys. A 487, 269 (1988).
- 5. F.C. Barker, Nucl. Phys. A 609, 38 (1996).
- 6. C.L. Woods et al., Aust. J. Phys. 41, 525 (1988).
- 7. D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004).
- 8. E. Gete et al., Phys. Rev. C 61, 064310 (2000).
- 9. U.C. Bergmann et al., Nucl. Phys. A 692, 247 (2001).
- 10. G. Nyman et al., Nucl. Phys. A 510, 189 (1990).
- 11. Y. Prezado et al., Phys. Lett. B 576, 55 (2003).
- 12. L. Buchmann et al., Phys. Rev. C 63, 034303 (2001).