Beta decays of ⁸He, ⁹Li, and ⁹C

D.J. Millener^a

Brookhaven National Laboratory, Upton, NY 11973, USA

Received: 23 October 2004 / Published online: 3 May 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

Abstract. The beta decays of ⁸He, ⁹Li, and ⁹C are interpreted in terms of shell-model calculations in a p-shell basis. Particular attention is paid to the observed low-energy decays that exhibit large B(GT) values.

PACS. 23.40.-s β decay; double β decay; electron and muon capture – 21.60.Cs Shell model – 27.20.+n $6 \le A \le 19$

1 Introduction

Supermultiplet symmetry is essentially conserved by the central part of the p-shell Hamiltonian and is broken mainly by the spin-orbit interaction. Apart from terms involving n and n^2 the SU_4 invariant terms of a typical interaction look like [1]

$$H \sim -3.91 \sum_{ij} P_{ij} + 0.59L^2 - 1.08S^2 + 0.59T^2$$

Thus the central interaction favors low T and high S for states with the same spatial symmetry [f]. This opens up the possibility of low-energy Gamow-Teller (GT) transitions with large Gamow-Teller matrix elements (no change in spatial quantum numbers).

2⁸He decay

The situation for ${}^{8}\text{He}(\beta^{-}){}^{8}\text{Li}$ is shown in fig. 1. From table 1, the first three states have mainly [31] symmetry the mixture of ${}^{1}P$, ${}^{3}P$, and ${}^{3}D$ varies considerably for different interactions— and owe their GT strength to small admixtures of [22] symmetry. On the other hand, the large B(GT) value, defined by $ft \cdot B(\text{GT}) = 6144.4$ s, for the 1_{4}^{+} state is due to the match of spatial quantum numbers with the ${}^{8}\text{He}$ ground state and does not vary much in different calculations. The 1_{4}^{+} state takes a large fraction of the Ikeda sum rule $12(g_{A}^{\text{eff}})^{2} \sim 14$, where $g_{A}^{\text{eff}} \sim 1.07$ [2]. The ~ 9.3 MeV state can decay by neutron emission $(S_{n} = 2.03 \text{ MeV})$ and triton emission $(S_{t} = 5.39 \text{ MeV})$, mainly through the [31] component. The shell-model spectroscopic factors lead to comparable neutron and triton widths and a total width of ~ 1 MeV. Details are given in table 2. Existing fits [3,4,5] give $E_{x} \sim 9.0 \rightarrow 9.7$ MeV

Fig. 1. Level spectrum showing the four 1^+ levels of ⁸Li reached in the β^- decay of ⁸He. Energies are in MeV.

Table 1. Symmetry content and B(GT) values for the 1⁺ final states of ⁸Li (see fig. 1) in the β^- decay of ⁸He. The ⁸He initial state is 74% [22] symmetry with L = 0 and S = 0 (26% [211] symmetry with L = 1 and S = 1). The 84(1)% branch to 1⁺₁ combined with $t_{1/2} = 119.0(15)$ ms gives B(GT) = 0.391(7).

J_n^{π}	% [31]	% [22]	B(GT)
1_{1}^{+}	93.6	2.3	0.32
1_{2}^{+}	91.0	8.3	0.71
1_{3}^{+}	92.2	2.8	0.37
1_{4}^{+}	10.6	71.5	11.7

^a Conference presenter. e-mail: millener@bnl.gov

Table 2. Calculated triton and neutron widths for the 1_4^+ state of ⁸Li. The *S* values are the shell-model spectroscopic factors. The widths are estimated by matching *R*-matrix observed widths to single-particle widths from Woods-Saxon wells [1] and include integration over two-level *R*-matrix profile functions [6] for the broad ⁵He final states.

Decay	S	Γ (keV)
$1_4^+ \xrightarrow{t}{\rightarrow} {}^5\mathrm{He}(3/2^-)$	0.030	254
$\stackrel{t}{\rightarrow} {}^{5}\mathrm{He}(1/2^{-})$	0.066	253
$\stackrel{n}{\rightarrow}$ ⁷ Li(3/2 ⁻)	0.041	316
$\stackrel{n}{\rightarrow} {}^{7}\mathrm{Li}(1/2^{-})$	0.018	129

and $B(\text{GT}) = 5 \rightarrow 8$ for the 1_4^+ level but include only the ground-state triton channel and sometimes omit neutron channels [3]; see also [5]. Triton emission to the $1/2^-$ state of ⁵He needs to be included in a new many-level, many-channel *R*-matrix analysis along the lines of ref. [4] but including averaging over the profiles of the ⁵He states.

3 ⁹Li and ⁹C decay

A comparison of these mirror decays, based on analyses of experimental data, is shown in table 3. The initial states have mainly [32] symmetry with L = 1 and S = 1/2 (78%). Therefore, large B(GT)'s can occur for final states with [32] symmetry and L = 1 with S = 1/2 or S = 3/2, giving rise to five possible final states in the limit of good supermultiplet symmetry. The properties of the five corresponding shell-model states are given in table 4.

It should be noted that all final states except for the ⁹Be ground state decay into the $\alpha + \alpha + N$ channel, in many cases by nucleon emission through the broad firstexcited state of ⁸Be or via α emission through the unbound states of ⁵He or ⁵Li (or perhaps by three-body breakup) making for a difficult analysis. The mirror transitions to low-lying states with dominant [41] symmetry have small B(GT) values and are in quite good agreement. However, there is a large asymmetry for decays to $5/2^{-}$ levels near $E_x = 12$ MeV. This is unexpected for states with large B(GT) values. The B(GT) value for the decay of ⁹C to the 12.19 MeV state of ${}^{9}B$ is consistent with the theoretical prediction in table 4. Suspicion falls on the very large B(GT) value for the 11.81 MeV state of ⁹Li because, in the limit of good supermultiplet symmetry, the $5/2^-$ state takes only 1/3 of the Ikeda sum rule = $9(g_A^{\text{eff}})^2 \sim 10.4$.

The previously known [32] symmetry states with T = 1/2 are the $7/2_2^-$ and $5/2_4^-$ states, both with dominant L = 2, S = 3/2 components. These states are strongly populated in pickup and knockout reactions on ¹⁰B. The observed energies [7] are 11.81 and 14.48 MeV in ⁹Be and 11.65 and 14.7 MeV in ⁹B. The energies are well reproduced by the shell-model calculation. Table 4 show the $1/2^-$, $3/2^-$, and $5/2^-$ states that are predicted to have large B(GT) values. As already noted, the energy and B(GT) value for the $5/2_3^-$ state can account for the properies of the 12.19 MeV level observed in ⁹C(β^+). However, an explanation of the 9.0(10)% p₀ decay branch via

Table 3. Experimental data on the decays of ⁹C and ⁹Li [7]. The data for ⁹C(β^+) are from [8] after normalization to the ground-state branch of 54.1(15)% from [9]; also B(GT) = 1.92(24) for the 12.19 MeV level [9]. For ⁹Li(β^-) decay see [2, 10]; also B(GT) = 8.5(1.5) for the 11.81 MeV level [11].

J^{π}	${}^{9}\mathrm{B}$ E_{x}	${}^{9}\mathrm{C}(\beta^{+})$ $B(\mathrm{GT})$	${}^{9}\text{Be}$ E_x	${}^{9}\mathrm{Li}(\beta^{-})\ B(\mathrm{GT})$
$3/2_{1}^{-}$	0	0.0295(8)	0	0.0292(9)
$5/2_{1}^{-}$	2.36	0.053(12)	2.43	0.046(5)
$1/2_{1}^{-}$	2.75	0.013(2)	2.78	0.011(5)
			11.28	1.4(5)
$5/2_{3}^{-}$	12.19	2.16(22)	11.81	8.9(1.9)
	14.0	0.36(5)		
$3/2^{-}; 3/2$	14.65	~ 0	14.39	

Table 4. Results from a typical shell-model calculation. The first line gives the total [32] symmetry content for each shell-model eigenstate. The second line gives the dominant component, all with L = 1. The energies are given relative the $7/2_2^-$ state (83.4% [32] L = 2 S = 3/2) at 11.65 MeV in ⁹B (see text). The B(GT)'s are given for $g_A^{\text{eff}} = 1$.

	$1/2_{2}^{-}$	$3/2^3$	$5/2_{3}^{-}$	$1/2_{3}^{-}$	$3/2_4^-$
%[32] %(S)	89.8	97.2	88.1	89.5	89.2
	87(3/2)	86(3/2)	84(3/2)	83(1/2)	54(1/2)
$E_x(^9\mathrm{B})$	10.61	10.67	12.10	14.07	14.48
$B(\mathrm{GT})$	0.29	1.45	2.46	1.53	1.22

f-wave emission lies beyond the scope of a p-shell calculation. Beta-decay strength is also predicted to a number of $1/2^-$ and $3/2^-$ states. If these states mainly decay by α emission, as suggested by the calculation, their effect on the measured alpha spectra may be difficult to see.

A multi-level, multi-channel *R*-matrix analysis of the the β -delayed particle decay of ⁹C has been attempted [12]. An analysis that makes use of shell-model input, preferably from an extended basis (at least $(0+2)\hbar\omega$) shell-model calculation, would seem to be indicated.

This work is supported by the US Department of Energy under Contract No. DE-AC02-98CH10886.

References

- 1. D.J. Millener, Nucl. Phys. A 693, 394 (2001).
- 2. W.-T. Chou et al., Phys. Rev. C 47, 163 (1993).
- 3. M.J.G. Borge et al., Nucl. Phys. A 560, 664 (1993).
- F.C. Barker, E.K. Warburton, Nucl. Phys. A 487, 269 (1988).
- 5. F.C. Barker, Nucl. Phys. A 609, 38 (1996).
- 6. C.L. Woods et al., Aust. J. Phys. 41, 525 (1988).
- 7. D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004).
- 8. E. Gete et al., Phys. Rev. C 61, 064310 (2000).
- 9. U.C. Bergmann et al., Nucl. Phys. A 692, 247 (2001).
- 10. G. Nyman et al., Nucl. Phys. A 510, 189 (1990).
- 11. Y. Prezado et al., Phys. Lett. B 576, 55 (2003).
- 12. L. Buchmann et al., Phys. Rev. C 63, 034303 (2001).